Polysulfonylamines. CXIV. \dagger trans-Di-methyltetrakis(urea- O)tin(IV) bis[di(methanesulfonyl)amidate] acetonitrile monosolvate

Andreas Wirth, Oliver Moers, Peter G. Jones* and Armand Blaschette*

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: jones@xray36.anchem.nat. tu-bs.de
(Received 27 May 1999; accepted 9 September 1999)

Abstract

The title complex, $\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{4}-\right.$ $\left.\mathrm{S}_{2}\right)_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$, was prepared from $\mathrm{Me}_{2} \mathrm{SnBr}_{2}$, AgN $\left(\mathrm{SO}_{2} \mathrm{Me}\right)_{2}$ and urea via a one-pot reaction in MeCN solution. The asymmetric unit consists of two half cations (of which the Sn atoms lie on inversion centres), two anions and one molecule of acetonitrile. These species are linked into a three-dimensional hydrogenbonding network, with 15 independent hydrogen bonds formed by amide-H atoms either to the sulfonyl-O atoms of the anions or to the acetonitrile-N atom. The trans-octahedral cations exhibit remarkably short $\mathrm{Sn}-\mathrm{O}$ bonds [2.225 (2)-2.241 (2) A $]$ and nearly ideal cis angles (range $90 \pm 2.6^{\circ}$). The paddle-wheel conformations of the cations are reinforced by intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between adjacent urea ligands.

Comment

In our laboratories, disulfonylamidate species have been successfully employed as non-coordinating counter-ions for unusual organotin(IV) complexes, e.g. the elusive aqua complex trans- $\left[\mathrm{Me}_{2} \mathrm{Sn}^{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$ (Hippel et al., 1993) or the stereochemically dissimilar bis-chelates trans- $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{dppoe})_{2}\right]^{2+}$ (Wirth et al., 1999) and cis$\left[\mathrm{Me}_{2} \mathrm{Sn}(\text { phen })_{2}\right]^{2+}$ (Wirth, 1998). Recently, the first structurally authenticated $\left[R_{2} \operatorname{Sn}(L)_{4}\right]^{2+}$ dication featuring a urea-type ligand L was observed as the guest entity in the accidentally discovered urea inclusion compound trans-[$\left.\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{ur})_{4}\right]^{2+} \cdot 2 A^{-} .6(\mathrm{ur})$, (I), where ur $=$ $\mathrm{OC}\left(\mathrm{NH}_{2}\right)_{2}$ and $A^{-}=\left(\mathrm{MeSO}_{2}\right)_{2} \mathrm{~N}^{-}$(Wirth, Moers et al., 1998). In the present contribution, we report the preparation (see Experimental) and the crystal structure of the title complex, (II), which is the (solvated) substrate of the inclusion compound (I) and is both chemically and geometrically related to the known analogues trans$\left[\mathrm{Me}_{2} \mathrm{Sn}(L)_{4}\right]^{2+} \cdot 2 A^{-}$, where $L=\mathrm{Me}_{2} \mathrm{SO}$ (Blaschette et

[^0]al., 1992) or pyridine-1-oxide (Wirth, Blaschette et al., 1998).

(II)

The asymmetric unit of (II), as defined by the atomic labelling in Fig. 1, contains two discrete half cations, two non-coordinating anions and one molecule of acetonitrile.

Both trans-octahedral $\left[\mathrm{Me}_{2} \mathrm{Sn}(\mathrm{ur})_{4}\right]^{2+}$ cations contain an Sn atom on an inversion centre; they closely resemble the single C_{i} symmetric cation in (I). Owing to the electron deficiency at the dipositive tin centres, the SnO bond lengths, 2.225 (2)-2.241 (2) \AA, are remarkably

Fig. 1. The structure of the title compound in the crystal. Ellipsoids represent 50% probability levels. Methyl-H atoms have been omitted and H -atom radii are arbitrary. Hydrogen bonds are indicated by dashed lines. Only the asymmetric unit is numbered.
short when compared with the $\mathrm{Sn}-\mathrm{O}$ distances of $2.40-$ $2.53 \AA$ in the uncharged octahedral complexes $\left[R_{2} \mathrm{Sn}\right.$ Cl_{2} (ethyleneurea) ${ }_{2}$] $(R=$ Me: Tavridou et al., 1993; $R=$ Bu: Tavridou et al., 1995); concomitantly, the cis angles in (II) do not deviate from 90° by more than $\pm 2.6^{\circ}$ (see Table 1). The paddle-wheel conformation of each cation is stabilized by two independent intramolecular hydrogen bonds ($\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$) formed between adjacent urea ligands (Table 2, first four entries). Whereas the $\mathrm{Sn}-\mathrm{O}-\mathrm{C}$ angles at the donor atoms lie in the narrow range 130.9 (2)-134.3 (2) ${ }^{\circ}$, significantly different orientations relative to the equatorial SnO_{4} planes are observed for the $\mathrm{N}-\mathrm{C}-\mathrm{N}$ planes of independent ligands. These variations result from rotations about the $\mathrm{Sn}-\mathrm{O}$ and $\mathrm{O}-\mathrm{C}$ bonds and are illustrated first by a selection of torsion angles $\mathrm{C}-\mathrm{O}-\mathrm{Sn}-\mathrm{O}$ in Table 1 and secondly by the angles between corresponding $\mathrm{Sn}-\mathrm{O}$ $\mathrm{C} n$ and $\mathrm{N}-\mathrm{C} n-\mathrm{N}$ planes [41.8(4), 14.3 (6), 18.6 (5) and $58.6(3)^{\circ}$ for C6, C7, C9 and C10, respectively]. Within the urea molecules, the $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ distances lie in the ranges 1.258 (4)-1.282 (4) \AA (average $1.270 \AA$) and $1.314(5)-1.343$ (4) \AA (average $1.326 \AA$), respectively. The OCN_{2} skeletons are essentially planar, the largest observed deviation from coplanarity being 0.011 (3) A for C6.

Both $\left(\mathrm{MeSO}_{2}\right)_{2} \mathrm{~N}^{-}$ions feature bond lengths and bond angles that match those commonly found for ionic di(methanesulfonyl)amidates (see e.g. Henschel et al., 1997; Weitze et al., 1995, and references therein), but it can be seen from the $\mathrm{O}-\mathrm{S}-\mathrm{N}-\mathrm{S}$ torsion angles in Table 1 that the ions are substantially distorted from the usual approximately C_{2} symmetric conformation.

Apart from the intracationic hydrogen bonds mentioned above, an intricate three-dimensional hydrogenbonding network is present in the crystal, with 15 independent hydrogen bonds (Table 2) formed by amide-H atoms to either the sulfonyl-O atoms of the anions or the acetonitrile- N atom. The intracationic and six of the intermolecular hydrogen bonds are shown in Fig. 1; cf. Wirth (1998) for a series of figures illustrating further details of the packing. Obviously the conformational distortions of both the cations and anions (see above) must be attributed to crystal-packing forces arising from the geometric requirements of the hydrogen-bonding network; similar distortions have been observed for the inclusion compound (I), whose structure contains two intracationic and 21 intermolecular hydrogen bonds.

Experimental

Compound (II) was prepared via a one-pot reaction, starting with a solution containing $\mathrm{AgN}\left(\mathrm{SO}_{2} \mathrm{Me}\right)_{2}(0.905 \mathrm{~g}, 3.23 \mathrm{mmol})$ and urea $(0.388 \mathrm{~g}, 6.46 \mathrm{mmol})$ in acetonitrile (25 ml), to which was slowly added a solution of $\mathrm{Me}_{2} \mathrm{SnBr}_{2}(0.500 \mathrm{~g}$, 1.62 mmol) in the same solvent (15 ml). After stirring the mixture for 3 h at $343 \mathrm{~K}, \mathrm{AgBr}$ was removed by filtration and the hot filtrate cooled slowly to room temperature. One of the
colourless and transparent needles, which had separated after one day, was removed from the mother liquor and without delay subjected to low-temperature structure analysis. When freed from the mother liquor and dried in vacuo, the solvate rapidly loses MeCN (elemental analysis unsatisfactory). The effective yield of partially desolvated product was ca 50% (0.61 g ; m.p. 409 K). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 200 \mathrm{MHz}$, p.p.m.): δ $0.92\left(s, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Sn}\right), 2.86\left(s, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{~S}\right), 4.5-6.0(\mathrm{sbr}, 16 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right) ;{ }^{2} J\left({ }^{19} \mathrm{Sn}-\mathrm{H}\right)=110.4 \mathrm{~Hz},{ }^{2} J\left({ }^{117} \mathrm{Sn}-\mathrm{H}\right)=105.8 \mathrm{~Hz}$.

Crystal data

$\left[\mathrm{Sn}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}\right)_{4}\right]$ -

Mo $K \alpha$ radiation

$\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{NO}_{4} \mathrm{~S}_{2}\right)_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}$
$M_{r}=774.46$
Monoclinic
C2/c
$a=47.600(6) \AA$
$b=6.6063$ (8) \AA
$c=22.135(2) \AA$
$\beta=116.371(9)^{\circ}$
$V=6236.4(12) \AA^{3}$
$Z=8$
$D_{x}=1.650 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens P4 diffractometer
ω scans
Absorption correction:
ψ scan (XEMP; Siemens,
1994a)
$T_{\text {min }}=0.795, T_{\text {max }}=0.891$
5455 measured reflections 5384 independent reflections 4037 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.030$
$w R\left(F^{2}\right)=0.062$
$S=0.907$
5384 reflections
435 parameters
H atoms treated by a mixture of independent and constrained refinement
$\lambda=0.71073 \AA$
Cell parameters from 63 reflections
$\theta=3.0-12.5^{\circ}$
$\mu=1.155 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Needle
$0.4 \times 0.1 \times 0.1 \mathrm{~mm}$
Colourless

Table 1. Selected geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Sn} 1-\mathrm{C} 5$	2.094 (3)	Sn2-C8	2.101 (4)
$\mathrm{Sn} 1-\mathrm{O} 9$	2.225 (2)	$\mathrm{Sn} 2-\mathrm{Ol1}$	2.225 (2)
$\mathrm{Sn} 1-\mathrm{OlO}$	2.239 (2)	$\mathrm{Sn} 2-\mathrm{O} 12$	2.241 (2)
O9-Snl-O10	90.90 (8)	C8-Sn2-O12	91.35 (13)
C5-Snl-O9	88.50 (12)	C6-09-Snl	133.3 (2)
C5-Sn1-O10	87.64 (12)	C7-O10-Snl	134.3 (2)
$\mathrm{O} 11-\mathrm{Sn} 2-\mathrm{Ol2}$	92.60 (8)	C9-O11-Sn2	132.0 (2)
C8-Sn2-O11	88.81 (12)	$\mathrm{C} 10-\mathrm{Ol2}-\mathrm{Sn} 2$	130.9 (2)
O10-Sn1-O9-C6	-38.5 (3)	$\mathrm{O} 3-\mathrm{S} 2-\mathrm{Ni}-\mathrm{SI}$	-169.0 (2)
$\mathrm{O} 9{ }^{\text {- }} \mathrm{Snl}-\mathrm{OlO}-\mathrm{C} 7$	-34.1 (3)	$\mathrm{O} 4-\mathrm{S} 2-\mathrm{Ni}-\mathrm{SI}$	-42.4 (3)
$\mathrm{O} 12-\mathrm{Sn} 2-\mathrm{O} 11-\mathrm{C} 9$	30.8 (3)	$\mathrm{O} 5-\mathrm{S} 3-\mathrm{N} 2-\mathrm{S} 4$	-158.31 (19)
O11"-Sn2-O12-C10	-47.6 (3)	O6-S3-N2-S4	-30.0 (3)
$\mathrm{Ol}-\mathrm{S} 1-\mathrm{Ni}-\mathrm{S} 2$	-146.0 (2)	O7-S4-N2-S3	-168.08 (19)
$\mathrm{O} 2-\mathrm{Sl}-\mathrm{N} 1-\mathrm{S} 2$	-16.9 (3)	O8-S4--N2-S3	-40.2 (3)

Table 2. Hydrogen-bonding geometry ($\AA^{\circ},^{\circ}$)

D-H. \cdot A	D-H	H. . A	D. . A	D-H. . A
N3-H01 . . O10	0.839 (16)	2.36 (3)	3.083 (4)	144 (3)
N5-H05 . . O^{1}	0.839 (16)	2.20 (2)	2.971 (4)	153 (3)
N8- $\mathrm{H} 012 \cdots \mathrm{O}{ }^{\text {a }}$	0.833 (16)	2.159 (19)	2.963 (4)	162 (4)
N10-H016. .O11"	0.842 (16)	2.49 (3)	3.062 (4)	126 (3)
$\mathrm{N} 3-\mathrm{HO1} \ldots \mathrm{O}]^{\text {II }}$	0.839 (16)	2.50 (3)	2.957 (4)	115 (3)
$\mathrm{N} 3-\mathrm{H} 02 \cdots \mathrm{O}^{\text {² }}$	0.840 (16)	2.19 (2)	2.980 (4)	157 (3)
N4-H03...O8 ${ }^{\text {- }}$	0.831 (16)	2.118 (19)	2.924 (4)	163 (3)
N4-H04. . O4 ${ }^{\text {d }}$	0.828 (15)	2.186 (18)	2.992 (4)	165 (3)
N6-H07. . O 3	0.850 (15)	2.25 (2)	2.996 (4)	146 (3)
N6-H08. . Ol' ${ }^{\text {" }}$	0.831 (15)	2.220 (17)	3.047 (4)	173 (3)
N7-H09 . . O7	0.836 (15)	2.066 (19)	2.881 (4)	165 (4)
N7-H010 . O 4	0.840 (16)	2.23 (3)	2.970 (4)	147 (4)
N8-H011...O2	0.838 (15)	2.109 (19)	2.909 (4)	160 (3)
N8-H011...O5 ${ }^{\text {vi }}$	0.838 (15)	2.60 (3)	2.864 (4)	100 (3)
N8-H012.. $\mathrm{OS}^{\text {V1 }}$	0.833 (16)	2.60 (4)	2.864 (4)	100 (3)
N9-H013. . N99	0.836 (16)	2.22 (2)	3.024 (5)	160 (4)
N9-H014. $\mathrm{OS}^{\text {" }}$	0.834 (16)	2.123 (18)	2.944 (4)	168 (4)
N10-H015...N99	0.851 (15)	2.63 (3)	3.328 (6)	140 (3)
N10-H016. . O7 ${ }^{\text {i }}$	0.842 (16)	2.34 (3)	2.970 (4)	132 (3)

Symmetry codes: (i) $1-x,-1-y, 1-z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (iii) $1-x, y$; $\frac{3}{2}-z$; (iv) $1-x, 1-y, 1-z$; (v) $1-x,-y, 1-z$; (vi) $x, 1-y, \frac{1}{2}+z$.
NH were freely refined but with $\mathrm{N}-\mathrm{H}$ bond lengths restrained as equal (command SADI; Sheldrick, 1997); methyl-H atoms were located from difference syntheses, idealized and refined as rigid groups allowed to rotate, but not tip.

Data collection: XSCANS (Fait, 1991). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: XP (Siemens, 1994b). Software used to prepare material for publication: SHELXL97.

The authors thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

> Supplementary data for this paper are available from the IUCr electronic archives (Reference: BMI 351). Services for accessing these data are described at the back of the journal.

References

Blaschette, A., Hippel, I., Krahl. J., Wieland, E.. Jones, P. G. \& Sebald, A. (1992). J. Organomet. Chem. 437, 279-297.

Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Henschel, D., Moers, O., Blaschette, A. \& Jones, P. G. (1997). Acta Cryst. C53, 1877-1879.
Hiemisch, O., Henschel, D., Blaschette, A. \& Jones, P. G. (1999). Z. Anorg. Allg. Chem. 625, 1391-1394.
Hippel, I., Jones, P. G. \& Blaschette, A. (1993). J. Organomet. Chem. 448, 63-67.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). XEMP. Empirical Absorption Correction Program. Version 2.10. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tavridou, P., Russo, U., Marton, D., Valle, G. \& Kovala-Demertzi, D. (1995). Inorg. Chim. Acta, 231, 139-145.

Tavridou, P., Russo, U., Valle, G. \& Kovala-Demertzi, D. (1993). J. Organomet. Chem. 460, C16-18.

Weitze, A., Henschel, D., Blaschette, A. \& Jones, P. G. (1995). Z. Anorg. Allg. Chem. 621, 1746-1754.
Wirth, A. (1998). PhD thesis, Technische Universität Braunschweig, Germany. [ISBN 3-89720-163-1]
Wirth, A., Blaschette, A. \& Jones, P. G. (1998). Main Group Met. Chem. 21, 309-313.
Wirth, A., Moers, O., Blaschette, A. \& Jones, P. G. (1998). Z. Anorg. Allg. Chem. 624, 1686-1694.
Wirth, A., Moers, O., Blaschette, A. \& Jones, P. G. (1999). Z. Anorg. Allg. Chem. 625, 982-988.

Acta Cryst. (1999). C55, 2035-2037

[2-(2-Pyridyl-N)quinoxaline- $\mathrm{N}^{\mathbf{1}}$]silver(I) nitrate

S. Shanmuga Sundara Raj, ${ }^{a}$ Hoong-Kun Fun, ${ }^{a}$ XiaoFeng Chen, ${ }^{b}$ Xu-Hui Zhu ${ }^{b}$ and Xiao-Zeng You ${ }^{b}$
${ }^{a} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and
${ }^{\text {b }}$ Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China. E-mail: hkfun@usm.my

(Received 24 May 1999; accepted 19 August 1999)

Abstract

The title compound, $\left[\mathrm{Ag}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3}\right)\right] \mathrm{NO}_{3}$, is an infinite one-dimensional polymer. Each Ag atom is coordinated by three N atoms, with $\mathrm{Ag}-\mathrm{N}$ bond distances in the range of 2.246 (3)- 2.413 (3) \AA.

Comment

Much effort has been devoted recently to the design of metal complexes exhibiting helical or polymeric architectures which have particular relevance to biological systems and asymmetric catalysis. Several silver(I) polymer helices have been reported (Tong et al., 1998; Hester et al., 1997; Carlucci et al., 1998; Psillakis et al., 1997). In this paper, we report the crystal structure of a silver(I)-2-(2-pyridyl)quinoxaline complex, (I).

(I)

Each Ag atom is, as expected in a three-coordinate environment, linked to three N atoms from two different 2-(2-pyridyl)quinoxaline molecules, resulting in trigonal coordination distorted toward Y-shaped geometry [$\mathrm{N} 3-\mathrm{Ag} 1-\mathrm{N} 2\left(x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}\right) 141.2(1)^{\circ}, \mathrm{N} 1-$

[^0]: \dagger Part CXIII: Hiemisch et al. (1999).
 (C) 1999 International Union of Crystallography

 Printed in Great Britain - all rights reserved

